3.31.57 \(\int \frac {\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{x^2} \, dx\) [3057]

3.31.57.1 Optimal result
3.31.57.2 Mathematica [A] (verified)
3.31.57.3 Rubi [A] (warning: unable to verify)
3.31.57.4 Maple [B] (verified)
3.31.57.5 Fricas [F(-1)]
3.31.57.6 Sympy [F]
3.31.57.7 Maxima [F]
3.31.57.8 Giac [F]
3.31.57.9 Mupad [F(-1)]

3.31.57.1 Optimal result

Integrand size = 26, antiderivative size = 155 \[ \int \frac {\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{x^2} \, dx=\frac {b \left (b d+2 c \sqrt {\frac {d}{x}}\right ) \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{4 c^2}-\frac {2 \left (a+b \sqrt {\frac {d}{x}}+\frac {c}{x}\right )^{3/2}}{3 c}+\frac {b \sqrt {d} \left (4 a c-b^2 d\right ) \text {arctanh}\left (\frac {b d+2 c \sqrt {\frac {d}{x}}}{2 \sqrt {c} \sqrt {d} \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}\right )}{8 c^{5/2}} \]

output
1/8*b*(-b^2*d+4*a*c)*arctanh(1/2*(b*d+2*c*(d/x)^(1/2))/c^(1/2)/d^(1/2)/(a+ 
c/x+b*(d/x)^(1/2))^(1/2))*d^(1/2)/c^(5/2)-2/3*(a+c/x+b*(d/x)^(1/2))^(3/2)/ 
c+1/4*b*(b*d+2*c*(d/x)^(1/2))*(a+c/x+b*(d/x)^(1/2))^(1/2)/c^2
 
3.31.57.2 Mathematica [A] (verified)

Time = 0.85 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.08 \[ \int \frac {\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{x^2} \, dx=\frac {\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}} \left (-\frac {2 \sqrt {c} \left (8 c^2-3 b^2 d x+2 c \left (4 a+b \sqrt {\frac {d}{x}}\right ) x\right )}{x}+\frac {3 b d \left (-4 a c+b^2 d\right ) \log \left (c^2 \left (b d+2 c \sqrt {\frac {d}{x}}-2 \sqrt {c} \sqrt {\frac {d \left (c+a x+b \sqrt {\frac {d}{x}} x\right )}{x}}\right )\right )}{\sqrt {\frac {d \left (c+\left (a+b \sqrt {\frac {d}{x}}\right ) x\right )}{x}}}\right )}{24 c^{5/2}} \]

input
Integrate[Sqrt[a + b*Sqrt[d/x] + c/x]/x^2,x]
 
output
(Sqrt[a + b*Sqrt[d/x] + c/x]*((-2*Sqrt[c]*(8*c^2 - 3*b^2*d*x + 2*c*(4*a + 
b*Sqrt[d/x])*x))/x + (3*b*d*(-4*a*c + b^2*d)*Log[c^2*(b*d + 2*c*Sqrt[d/x] 
- 2*Sqrt[c]*Sqrt[(d*(c + a*x + b*Sqrt[d/x]*x))/x])])/Sqrt[(d*(c + (a + b*S 
qrt[d/x])*x))/x]))/(24*c^(5/2))
 
3.31.57.3 Rubi [A] (warning: unable to verify)

Time = 0.34 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.88, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {2066, 1680, 1160, 1087, 1092, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{x^2} \, dx\)

\(\Big \downarrow \) 2066

\(\displaystyle -\frac {\int \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}d\frac {d}{x}}{d}\)

\(\Big \downarrow \) 1680

\(\displaystyle -\frac {2 \int \sqrt {a+\frac {b d}{x}+\frac {c d}{x^2}} \sqrt {\frac {d}{x}}d\sqrt {\frac {d}{x}}}{d}\)

\(\Big \downarrow \) 1160

\(\displaystyle -\frac {2 \left (\frac {d \left (a+b \sqrt {\frac {d}{x}}+\frac {c d}{x^2}\right )^{3/2}}{3 c}-\frac {b d \int \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c d}{x^2}}d\sqrt {\frac {d}{x}}}{2 c}\right )}{d}\)

\(\Big \downarrow \) 1087

\(\displaystyle -\frac {2 \left (\frac {d \left (a+b \sqrt {\frac {d}{x}}+\frac {c d}{x^2}\right )^{3/2}}{3 c}-\frac {b d \left (\frac {\left (4 a c-b^2 d\right ) \int \frac {1}{\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c d}{x^2}}}d\sqrt {\frac {d}{x}}}{8 c}+\frac {\left (b d+2 c \sqrt {\frac {d}{x}}\right ) \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c d}{x^2}}}{4 c}\right )}{2 c}\right )}{d}\)

\(\Big \downarrow \) 1092

\(\displaystyle -\frac {2 \left (\frac {d \left (a+b \sqrt {\frac {d}{x}}+\frac {c d}{x^2}\right )^{3/2}}{3 c}-\frac {b d \left (\frac {\left (4 a c-b^2 d\right ) \int \frac {1}{\frac {4 c}{d}-\frac {d^2}{x^2}}d\frac {2 \sqrt {\frac {d}{x}} c+b d}{d \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c d}{x^2}}}}{4 c}+\frac {\left (b d+2 c \sqrt {\frac {d}{x}}\right ) \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c d}{x^2}}}{4 c}\right )}{2 c}\right )}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {2 \left (\frac {d \left (a+b \sqrt {\frac {d}{x}}+\frac {c d}{x^2}\right )^{3/2}}{3 c}-\frac {b d \left (\frac {\sqrt {d} \left (4 a c-b^2 d\right ) \text {arctanh}\left (\frac {d^{3/2}}{2 \sqrt {c} x}\right )}{8 c^{3/2}}+\frac {\left (b d+2 c \sqrt {\frac {d}{x}}\right ) \sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c d}{x^2}}}{4 c}\right )}{2 c}\right )}{d}\)

input
Int[Sqrt[a + b*Sqrt[d/x] + c/x]/x^2,x]
 
output
(-2*((d*(a + b*Sqrt[d/x] + (c*d)/x^2)^(3/2))/(3*c) - (b*d*(((b*d + 2*c*Sqr 
t[d/x])*Sqrt[a + b*Sqrt[d/x] + (c*d)/x^2])/(4*c) + (Sqrt[d]*(4*a*c - b^2*d 
)*ArcTanh[d^(3/2)/(2*Sqrt[c]*x)])/(8*c^(3/2))))/(2*c)))/d
 

3.31.57.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1087
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x) 
*((a + b*x + c*x^2)^p/(2*c*(2*p + 1))), x] - Simp[p*((b^2 - 4*a*c)/(2*c*(2* 
p + 1)))   Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && 
GtQ[p, 0] && (IntegerQ[4*p] || IntegerQ[3*p])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1160
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol 
] :> Simp[e*((a + b*x + c*x^2)^(p + 1)/(2*c*(p + 1))), x] + Simp[(2*c*d - b 
*e)/(2*c)   Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] 
 && NeQ[p, -1]
 

rule 1680
Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k 
 = Denominator[n]}, Simp[k   Subst[Int[x^(k - 1)*(a + b*x^(k*n) + c*x^(2*k* 
n))^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && EqQ[n2, 2*n] && Fr 
actionQ[n]
 

rule 2066
Int[(x_)^(m_.)*((a_) + (b_.)*((d_.)/(x_))^(n_) + (c_.)*(x_)^(n2_.))^(p_), x 
_Symbol] :> Simp[-d^(m + 1)   Subst[Int[(a + b*x^n + (c/d^(2*n))*x^(2*n))^p 
/x^(m + 2), x], x, d/x], x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[n2, -2*n 
] && IntegerQ[2*n] && IntegerQ[m]
 
3.31.57.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(330\) vs. \(2(123)=246\).

Time = 0.24 (sec) , antiderivative size = 331, normalized size of antiderivative = 2.14

method result size
default \(\frac {\sqrt {\frac {b \sqrt {\frac {d}{x}}\, x +a x +c}{x}}\, \left (-3 \sqrt {c}\, \ln \left (\frac {2 c +b \sqrt {\frac {d}{x}}\, x +2 \sqrt {c}\, \sqrt {b \sqrt {\frac {d}{x}}\, x +a x +c}}{\sqrt {x}}\right ) \left (\frac {d}{x}\right )^{\frac {3}{2}} x^{3} b^{3}+6 \sqrt {b \sqrt {\frac {d}{x}}\, x +a x +c}\, \left (\frac {d}{x}\right )^{\frac {3}{2}} x^{3} b^{3}+6 a \sqrt {b \sqrt {\frac {d}{x}}\, x +a x +c}\, d \,x^{2} b^{2}+12 a \,c^{\frac {3}{2}} \ln \left (\frac {2 c +b \sqrt {\frac {d}{x}}\, x +2 \sqrt {c}\, \sqrt {b \sqrt {\frac {d}{x}}\, x +a x +c}}{\sqrt {x}}\right ) \sqrt {\frac {d}{x}}\, x^{2} b -6 \left (b \sqrt {\frac {d}{x}}\, x +a x +c \right )^{\frac {3}{2}} d x \,b^{2}-12 a \sqrt {b \sqrt {\frac {d}{x}}\, x +a x +c}\, \sqrt {\frac {d}{x}}\, x^{2} b c +12 \left (b \sqrt {\frac {d}{x}}\, x +a x +c \right )^{\frac {3}{2}} \sqrt {\frac {d}{x}}\, x b c -16 \left (b \sqrt {\frac {d}{x}}\, x +a x +c \right )^{\frac {3}{2}} c^{2}\right )}{24 x \sqrt {b \sqrt {\frac {d}{x}}\, x +a x +c}\, c^{3}}\) \(331\)

input
int((a+c/x+b*(d/x)^(1/2))^(1/2)/x^2,x,method=_RETURNVERBOSE)
 
output
1/24*((b*(d/x)^(1/2)*x+a*x+c)/x)^(1/2)/x*(-3*c^(1/2)*ln((2*c+b*(d/x)^(1/2) 
*x+2*c^(1/2)*(b*(d/x)^(1/2)*x+a*x+c)^(1/2))/x^(1/2))*(d/x)^(3/2)*x^3*b^3+6 
*(b*(d/x)^(1/2)*x+a*x+c)^(1/2)*(d/x)^(3/2)*x^3*b^3+6*a*(b*(d/x)^(1/2)*x+a* 
x+c)^(1/2)*d*x^2*b^2+12*a*c^(3/2)*ln((2*c+b*(d/x)^(1/2)*x+2*c^(1/2)*(b*(d/ 
x)^(1/2)*x+a*x+c)^(1/2))/x^(1/2))*(d/x)^(1/2)*x^2*b-6*(b*(d/x)^(1/2)*x+a*x 
+c)^(3/2)*d*x*b^2-12*a*(b*(d/x)^(1/2)*x+a*x+c)^(1/2)*(d/x)^(1/2)*x^2*b*c+1 
2*(b*(d/x)^(1/2)*x+a*x+c)^(3/2)*(d/x)^(1/2)*x*b*c-16*(b*(d/x)^(1/2)*x+a*x+ 
c)^(3/2)*c^2)/(b*(d/x)^(1/2)*x+a*x+c)^(1/2)/c^3
 
3.31.57.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{x^2} \, dx=\text {Timed out} \]

input
integrate((a+c/x+b*(d/x)^(1/2))^(1/2)/x^2,x, algorithm="fricas")
 
output
Timed out
 
3.31.57.6 Sympy [F]

\[ \int \frac {\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{x^2} \, dx=\int \frac {\sqrt {a + b \sqrt {\frac {d}{x}} + \frac {c}{x}}}{x^{2}}\, dx \]

input
integrate((a+c/x+b*(d/x)**(1/2))**(1/2)/x**2,x)
 
output
Integral(sqrt(a + b*sqrt(d/x) + c/x)/x**2, x)
 
3.31.57.7 Maxima [F]

\[ \int \frac {\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{x^2} \, dx=\int { \frac {\sqrt {b \sqrt {\frac {d}{x}} + a + \frac {c}{x}}}{x^{2}} \,d x } \]

input
integrate((a+c/x+b*(d/x)^(1/2))^(1/2)/x^2,x, algorithm="maxima")
 
output
integrate(sqrt(b*sqrt(d/x) + a + c/x)/x^2, x)
 
3.31.57.8 Giac [F]

\[ \int \frac {\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{x^2} \, dx=\int { \frac {\sqrt {b \sqrt {\frac {d}{x}} + a + \frac {c}{x}}}{x^{2}} \,d x } \]

input
integrate((a+c/x+b*(d/x)^(1/2))^(1/2)/x^2,x, algorithm="giac")
 
output
sage0*x
 
3.31.57.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sqrt {\frac {d}{x}}+\frac {c}{x}}}{x^2} \, dx=\int \frac {\sqrt {a+\frac {c}{x}+b\,\sqrt {\frac {d}{x}}}}{x^2} \,d x \]

input
int((a + c/x + b*(d/x)^(1/2))^(1/2)/x^2,x)
 
output
int((a + c/x + b*(d/x)^(1/2))^(1/2)/x^2, x)